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The equation for small-amplitude disturbances to an  unbounded flow of constant 
shear on a beta-plane has well-known solutions of a particularly simple form. In  
physical terms such solutions represent a flow in which absolute-vorticity contours, 
initially taking a wavy configuration, are deformed by the basic-state shear. Here 
it is shown that, at least in cases where the initial disturbance has long wavelength, 
the vorticity distribution predicted by such solutions eventually becomes barotrop- 
ically unstable, as the shearing over of material contours leads to local reversals in 
the cross-stream gradient of absolute vorticity. 

1. Introduction 
A multitude of authors working in a number of different areas of fluid dynamics, 

the first being Kelvin (Thomson 1887), have constructed what we shall refer to  as 
sheared-disturbance solutions. These are timc-dependent solutions of the equations 
for small-amplitude disturbances to a basic flow in which the shear is constant. The 
elemental forms of these solutions are single spatial Fourier modes in which the 
streamwise wavenumber remains constant and the cross-stream wavenumber 
changes at a constant rate. The effect of this change is that  lines of constant phase 
are sheared over by the basic flow, almost as if they corresponded to contours of a pas- 
sive tracer. (The correspondence is not always exact - see the remarks made in the 
next section.) 

Here we shall be primarily concerned with sheared disturbances in a two- 
dimensional flow on a beta-plane, where there is a constant cross-stream gradient of 
planetary vorticity, as previously studied by Yamagata (1976), Boyd (1983) and 
Tung (1983). The new aspect of this work is that  attention will be concentrated on 
the ultimate fate of the disturbances, particularly in the atmospherically relevant 
case when the viscosity is very small. A brief motivation for the study will be 
presented in the next section. The fluid-dynamical process exemplified by the 
sheared-disturbance solution is an ubiquitous one and it is therefore intcresting that 
investigation of the flow represented by the solution raises the possibility that i t  may 
be unstable. Explicit confirmation of the instability is given by the results of a 
calculation described in 43 which derives growth rates and phase speeds for the 
unstable disturbances. 

The way in which the instability arises is analogous to that found in other 
dynamical problems that have been studied very recently, the instability of a 
nonlinear Rossby-wave critical layer described by Killworth & Mclntyre (1985) and 
Haynes (1985) being particularly closely related. Comparison with this problem 

t Present address: Department of Applied Mathematics and Theoretical Physics, Vniversity of 
('ambridge. Silver Street. Cambridge, CH3 9EW, UK.  
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allows, amongst other things, an assessment of the extent to which the sheared 
disturbances are likely to  be disrupted by the action of the instability. These 
qualitative considerations, and the results of the instability analysis itself, are 
confirmed by some simple numerical experiments described in $4. 

2. The sheared-disturbance solution 

flow on a beta-plane and is given by 
The equation to be solved is that for unbounded two-dimensional incompressible 

9+ at J($,q) = 0, 

where q is the absolute vorticity and $ is a stream function. Cartesian coordinates 
x and y are used to describe spatial variation, and the velocity components in the 
x- and y-directions are given by @$/ax, -a$/ay). The absolute vorticity is defined 

where P is the gradient of the background planetary vorticity, which is taken to  be 
parallel to the y-axis. We consider a basic flow in the x-direction with constant shear 
A ,  which is here, without loss of generality, taken to be positive. This flow is weakly 
disturbed so that the total stream function may be written as 

$ = - $4y2+€q5(~, y, t). (2.3) 

The parameter E is a dimensionless measure of the amplitude of the disturbance and 
is taken to be small. It is convenient from now on to work in terms of dimensionless 
variables defined using A l p  as a lengthscale, A - l  as a timescale, A as a vorticity scale 
and A3/p as a scale for the stream function. Using (2.2) and (2.3) the dimensionless 
form of (2.1) may be written as 

which a t  leading order in E is linear in q5. Let us consider the simplest possible case, 
in which the relative vorticity pattern a t  t = 0 is given by 

(2 .5)  5 = sV2+ = e Re{cxp (iKx+iAy)}, 

representing a single Fourier mode in z and y with dimensionless wavenumber ( K ,  A ) ,  
where K is taken to be positive. 

If e is small enough i t  is plausible that the term on the right-hand side of (2.4) 
may be neglected. The resulting linear equation may be solved by a transform- 
ation to so-called sheared coordinates, a method first used by Phillips (1966) for 
the internal-gravity-wave problem and first applied to the Rossby-wave case by 
Yamagata (1976). However the transformation is not strictly necessary; we may 
simply seek a solution of the form 

Q = q5@) (x, y, t) = Re {f(t) exp (iK(x-yt) +ihy)}, ( 2 . 6 ~ )  

6 = [ ( t )  (z ,y , t )  = Re{-LK2+(~t-A)2]f(t) exp(iK(2-yt)+ihy)}, (2 .6b)  

where the functionf(t) is to  be determined. On substituting this expression into the 
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equation we obtain an ordinary differential equation for f(t) which, with the initial 
condition (2.5), may be solved and the answer substituted in (2.6a, b) to give 

r~ ’) + tan-1 (‘)I}, I 

K 
k(x-yt)+ihy+- tan-l - 

1 { K2 f (h  - Kt)’ 
qVt) (2, y, t )  = Re 

( 2 . 7 ~ )  

Qt)(x,y,t) = Re iK(x-yYt)+ihy+- 1 tan-’ (kti’)+; - tan-l(;)]} (2.76) 
K 

(Yamagata 1976; Boyd 1983; Tung 1983). As first shown by Orr (1907) in the context 
of Couette flow (without the beta-effect), the modulus of the function f ultimately 
decreases but may initially increase if h < 0. The possibility of temporary amplifi- 
cation, which is not affected by the inclusion of the beta-effect (Boyd 1983; Tung 
1983), has been part of the reason for the recent interest in sheared disturbances in 
atmospheric flows (e.g. Farrell 1982). However, as Shepherd (1985) has pointed out, 
although the temporary amplification in one Fourier component may be consider- 
able, when the initial disturbance is made up of a number of Fourier components 
the amplification of the disturbance as a whole is, more often than not, weak or 
non-existent. 

One of the most revealing ways to present the solution is by displaying maps of 
absolute vorticity , which is conserved following material particles. Correct to O(e2 ), 
the absolute vorticity is given by 

q = y + s p ( z , y , t ) .  (2.8) 

Contours of q are shown in figure 1 ,  for the case h = 0, a t  times t = 0 , 4  and 12, with 
the value of e taken to be 0.25. Since e has a finite value, there might seem to be a 
finite error involved in taking the solution of only the linear version of (2.4). However, 
as often turns out to be the case, the single plane wave is a finite-amplitude solution 
of the full nonlinear equation. 

The progression seen from figure 1 (a-c) is mainly the result of the deformation of 
the material contours by the basic shear. This is not quite the whole explanation since 
the absolute vorticity is not a passive tracer and itself controls the flow field. However 
the effect of the induced circulations is merely to change the phase of the disturbance 
(Boyd 1983) through the Rossby-wave propagation mechanism. It is this which leads 
to the complex exponential factor in the expression forf(t) included in the right-hand 
sides of ( 2 . 7 ~  and b ) .  

The maps of absolute vorticity make the mechanism behind the behaviour of 
sheared disturbances transparent. The amplitude of the vorticity perturbation 
(indicated by the meridional displacement of the contours) remains constant but, 
through the shearing action, the size of the spatial structure changes. In the case 
shown in figure 1 the scale shrinks, but in general there may be an initial period in 
which the scale grows, for example if the initial configuration of the contours were 
the mirror image of that in (c). The stream function is obtained by taking the inverse 
Laplacian of the vorticity field and so its amplitude decreases as the scale shrinks. 
At  large times the absolute-v0rticit.y field behaves more and more like a passive tracer 
since the induced circulations become weaker and weaker. One consequence of this 
is that the argument of the complex exponential factor inf(t), which represents the 
phase change, approaches a constant value as t becomes large. 
Of course, the absolute-vorticity field resulting from a non-plane wave initial 
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FIGURE 1.  The absolute-vorticity distribution described by the sheared-disturbance solution 
with h = 0 and E = 0.25 at (a) t = 0, (b )  4, (c) 12. 

condition might look rather different to those shown in figures 1 (a-c), since it would 
comprise a superposition of solutions such as (2.7 b ) .  However, given the form such 
expressions take, i t  seems beyond question that the field would eventually be 
characterized by the local tilting of contours seen in figure 1 (c). 

It is well known that sheared-disturbance solutions are closely related to the 
continuous part of the frequency spectrum of disturbances to shear flows (Orr 1907 ; 
Case 1960). Indeed solutions such as (2.7a, b )  may be represented as a superposition 
of single-frequency modes, as one would expect if the spectrum was complete, but 
the representation is, not surprisingly, unwieldy. What is important, however, is that 
sheared disturbances form an essential part of the response of a shear flow to almost 
any forcing or disturbance (see Dickinson 1970 and Warn & Warn 1976 for one 
example). In the case of interest, two-dimensional flow on a beta-plane, where the 
essence of the dynamics is the advection of absolute vorticity, sheared disturbances 
result from any initial condition where absolute-vorticity contours do not lie along 
streamlines, as is the case in figure 1 (a). There is therefore good reason to believe that 
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flow features similar to that represented by the sheared-disturbance solution are very 
common. 

One of the striking features of the progression from figure 1 (a+) is that the angle, 
measured in a clockwise direction, between portions of the absolute-vorticity 
contours and the x-axis increases so that, for example in figure 1 ( b ) ,  certain tangents 
to the contours lie parallel to the y-axis. This is an indication that the local meridional 
vorticity gradients associated with the disturbance are as large as the basic-state 
absolute-vorticity gradient and might suggest, at first sight, that the term on the 
right-hand side of (2.4) can no longer be neglected. Of course in the single plane-wave 
case this term is identically zero. Furthermore, Tung (1983) was able to show that, 
under certain circumstances, even when the disturbances were not exactly plane 
waves the correction forced by the nonlinear term to the linear solution describing 
evolution from a bounded initial vorticity disturbance remained small, provided that 
it was small initially. The physical reason for this is that, for small-amplitude 
disturbances, by the time the meridional vorticity gradients have become as large 
as that in the basic state the meridional structure is very fine and the disturbances 
are, in effect, locally plane waves. Disturbance-vorticity contours and streamlines are 
then almost coincident (rather than being exactly coincident as they are in the exact 
plane-wave case). Tung (1983) deduced from his result that, if linear theory, i.e. 
ignoring the right-hand side of (2.4), was adequate to describe the initial evolution 
of the disturbance, then i t  would remain adequate for all time. 

Now let us consider the absolute-vorticity gradient along a single meridional 
section, in figure 1 (c), for example. The fact that the absolute-vorticity contours have 
overturned indicates that the gradient is not one-signed. If the flow were 
unidirectional then Rayleigh's criterion for barotropic instability would be satisfied. 
Following Killworth & McIntyre (1985), who noted similar features in a nonlinear 
Rossby-wave critical layer, it is suggested that the sheared-disturbance flow is 
unstable. 

3. The instability analysis 
We now consider the evolution of small disturbances to the basic state comprising 
the uniform shear flow plus the sheared disturbance. We first take account of the fact 
that we are primarily interested in times when the meridional gradient of absolute 
vorticity is no longer one-signed. Differentiation of the expression for the vorticity 
field with respect to y shows that this is so only when t = O(s-' K - ~ ) .  A t  such a time 
there is very fine structure (on a scale E )  in the sheared-disturbance vorticity field. 
Anticipating a multiple-scales approach to the problem, we define a slow timescale 
and a rapid spatial scale, described by the variables 

7 = E t ,  Y = s-ly. (3.1) 

For the time being we shall not introduce these new variables into the analysis 
explicitly. 

Order-of-magnitude considerations suggest that the growth rate of the instability 
is likely to be roughly equal to the vorticity contrast EA across the regions of positive 
and negative vorticity gradient so that the amplitude of the disturbance is likely to 
be a function of the slow time variable r.  However the disturbance may translate 
with some phase speed c,,, say, and any assumed functional form must allow this. 
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Therefore, imposing an extra disturbance on the flow which gives a contribution t$ 
to the stream function, the absolute vorticity may be written as 

q = y + " ~ ( t ) ( x , y , t ) + d V ~ ~ ( x - c , t ,  y,E-'y,Et), (3.2) 

I) - - &j2 + 15$h(~) (X, y, t ) -k $( K - Co I!, y, B-'y, E t )  . 

and the total stream function as 

(3.3) 

The form of the new disturbance is restricted to varying on a lengthscale which is 
O( 1)  in the x-direction. That this restriction allows the phenomena of interest to occur 
will become evident a t  the end of the calculation. The parameter t is a measure of 
the amplitude of the vorticity perturbation associated with the extra disturbance. 
This would be as large as that associated with the sheared disturbance if Ewere equal 
to B .  However, we shall take t4 E ,  restricting the analysis to times when the new 
disturbance has not grown to sufficient amplitude to affect the sheared disturbance. 

Substituting these expressions into the full equation (2.4), replacing st, wherever 
it appears, by 7 and using the fact that the sheared disturbance is itself a solution 
of the equation, we may obtain, a t  leading-order in B ,  the equation for the new 
disturbance, 

The terms on the right-hand side of the equation turn out not to affect the 
leading-order solution and so at this stage will be set equal to  zero. The basic-state 
absolute-vorticity gradient which appears as the coefficient of a$/ax is a function of 
KX and ~ 7 ,  and taking account of this variation turns out to  be the main technical 
difficulty in solving the equation. However, when the non-dimensional zonal wave- 
number K is such that K 4 1,  this difficulty may be avoided. There is then a clear 
separation between the zonal lengthscales on which the sheared disturbance and the 
new disturbance vary, being in dimensional terms A l p  and respectively. 
Furthermore there is a corresponding separation in the timescales, which are simply 
those for advection through the appropriate 1engthscales.t This particular separation 
of scales is identical with that described in Killworth & McIntyre (1985) and may 
be exploited in the same manner. Thus in (3.4) the coefficient of @/ax may be 
regarded as being independent of x and 7; to  reflect this we introduce the slow 

(3.5) 
variables .i and 2 defined by 

? = K 7 ,  2 =  KX, 

which may be kept constant as x and 7 vary by amounts of order unity. 
We now seek normal-mode solutions of (3.4) taking the form 

i =  Re[$(y) exp(iK"(x-cot-c7))], (3.6) 

where, without loss of generality, we may take I? > 0, and require that 4 be bounded 
as JyI -too. The function $ therefore satisfies the equation 

(3.7) 

We use a multiple-scales method to  deal with the fine structure in the y-direction 

t The relevant velocity scale is given by the shear A multiplied by a typical meridional particle 
displacement €A/ /? .  
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and so write y-derivatives as a/ay = (i3/i3y)y+ (l/e)(a/aY),, where Y is the variable 
defined in (3.1 ) , and pose the expansions 

4 = ~ , + E I ~ E $ ~ + E $ ~ + E ~ I ~ E $ , + E ~ $ , + ~ ( E ~ I ~ E ) ,  ( 3 . 8 ~ )  

EC = E C 2 + O ( € 2 ) ,  (3.8b) 

where each q5n is a function of y and Y. The logarithmic terms are necessary because 
the leading-order approximation to (3.7) is singular when y = co. 

These expansions may be substituted into (3.7) and the various powers of E and 
Ins that appear may be isolated. The first four equations give that 

$n =gn(y), n =  192,394, (3.9) 

where the functions gn remain to be determined, but at  O(e2) the equation 

az$ 
( y - c o ) r ! - P g o  +[l+. icos(P-  Y . i + A y ) ] g o + ( y - c o ) ~ =  a y2 0 (3.10) 1 

is obtained. For there to be no terms growing like Y 2  the condition 

(3.11) 

must be satisfied, which gives an equation for go. This equation is simply that for 
a Rossby wave with phase speed co on a flow with constant shear and in the presence 
of a constant gradient of absolute vorticity. What has emerged from the 
multiple-scales analysis is that, at least in the parts of the flow where the perturbation 
expansion (3.8a, b )  is valid, the leading-order disturbance does not feel the rapid 
sinusoidal variations in the vorticity gradient. 

Equation (3.11) has no solutions which are non-singular and satisfy the boundary 
conditions; however since co is real i t  does have the singular solution 

( 3 . 1 2 ~ )  

(3.12b) 

where U is a confluent hypergeometric function as defined by Abramowitz & Stegun 
(1964). The singular behaviour of this solution near y = co and the corresponding 
higher-order singularities in subsequent terms in the expansion ( 3 . 8 ~ )  lead to a 
breakdown of the assumed asymptotic form. It may be shown that the expansion 
is no longer valid when y-c, = O(s), suggesting that this should be taken as an inner 
region and a new expansion for $ posed. An inner coordinate 8 = ( y-co)/e is 
therefore defined and the form of the new expansion valid in the inner region is taken 
to be 

(3.13) 

From now on the analysis is very similar to that in the nonlinear critical layer problem 
analysed in Killworth & McIntyre (1985) (see especially their $3). Following the 
method of matched asymptotic expansions we shall require that the two expressions 
for $, ( 3 . 8 ~ )  and (3.13), blend smoothly from one region to the other. To aid 
understanding of the physical nature of the problem which allows use of this 
mathematical formalism the different regions and scalings are shown in figure 2. 
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FIGURE 2. Regions for the matched-asymptotic analysis, together with the basic flow and basic-state 
absolute-vorticity profiles. The inner region is described by the coordinate Y and the outer region 
by the two coordinates y and Y( = y/e). For the calculation presented in $3  the wavelength of the 
sheared disturbance A / ~ K  is taken to be much larger than A l p .  

Once again, this expansion (3.13) may be substituted into (3.7) and different orders 

= c,, dj, = c,, (3.14) 

of s isolated. At 0(1)  and O(s  Ins) i t  is found that 

where Go and C, are constants. Matching the first with the leading-order outer 
solution, using the power-series expansion of the function U given in Abramowitz & 

(3.15) 
B - -- Stegun (1964), gives A 

r(- 1 / 2 4  r ( 1 / 2 3 .  
c, = 

At next order the equation for dj2 is found to be 

(3.16) 
a2& 

a y 2  
(a-cz)-=2+[1+Ij cos(f+hco-?a)]Co = 0. 

The matching condition for the term proportional to y-co in the expansion of the 
outer solution, which is valid as (y-co) becomes small, may be written as 

(3.17) 

This condition may be derived using the properties of the function U and a relation 
between digamma functions, all given in Abramowitz & Stegun (1964). 

Evaluating the left-hand side of (3.17) using (3.16) the eigenvalue relation 

O0 [i +? cos (a+hc,-iP)] x d P = x  cot- 
Y - C 2  2k (3.18) 

may be obtained (cf. (3.17) in Killworth & McIntyre 1985) where, since we are 
concerned with growing modes with Im (c2) > 0, the path of integration in the 
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FIGURE 3. Sheared-disturbance stability problem: the imaginary part of the phase speed Im ( c z )  
(dotted line) and growth rate ~ I m ( c , )  (solid line), as predicted by (3.20), plotted against 
wavenumber K. The cases i = 2, 4, 6 are shown. The predicted large-7 value of Im (c2), which is 
n/2e, is marked by a dashed line for comparison. 

complex y-plane is taken below the pole at = c,. The value of the integral may 
be calculated using standard methods of contour integration and gives the real and 
imaginary parts of (3.18) to  be 

l+-iexp(--iImc,)cos(hc,--iRec,+P) = 0 ,  ( 3 . 1 9 ~ )  

(3.19 b )  5 exp (--i Imc,) sin (hco--i Rec,+P) = 0. 

These equations may be solved to give 

c,A+P-tan-'(cot&)] (3.20a, b)  

Note that the quantities co and Re(c,) cannot be determined uniquely. The 
sheared-disturbance vorticity distribution is invariant under transformations 
y = y+A,  providing that (,I-?/€) A = 2xN,  where N is an integer. This condition 
admits any A ,  at least to leading order in E .  The whole problem is then invariant under 
y = y + A ,  c = c + A ,  since the transformation in y may be accompanied by a Galilean 
transformation to take account of the shear flow. It is clear then that given one 
solution specified by the values of G, and c, there is an infinite family of solutions 
given by co = c,+ A,  c, = c,+hA/-i where A is any real number. 

The solution ( 3 . 2 0 ~ )  shows that growing normal-mode solutions exist if and only 
if -i 2 1 ,  which is just the condition for the absolute-vorticity gradient to change sign. 
In fact it is simple to prove a version of Rayleigh's theorem for this problem, in a 
manner analogous to that described in Haynes (1985). 

The structure of Im (cz) as a function of K" is complicated near K"= 0 but the 
periodicity in K"-' means that the mode with the largest growth rate has 2 > i. The 
quantities Im (c,) and 2Im (c,), the latter being the growth rate, are plotted against 
2 for various values of i in figure 3. 
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When .i is large i t  may be shown from (3.20a, b)  that unstable modes exist for 

f(l+G+o(;)) 1 < t<;(l+O(;)). 

The fastest-growing wavenumber is then 

K, - - 
2e 

for which the growth rate, K Im (c2), is given by 

(3.21) 

(3.22) 

(3.23) 

I n  dimensional terms the largest growth rate is of size m A / 2 e  and the fastest- 
growing wavenumber is n.i/3/2eA. Although the analysis up to this point has formally 
assumed that the dimensionless x-wavenumber of the sheared disturbance K is small, 
the results might be expected to apply qualitatively if C, Im (cz)  were larger than 
the rate of change of the sheared-disturbance solution, which is roughly given by 7-l, 

and 2, is larger than the wavenumber of the sheared-disturbance solution K .  These 
two conditions are always met for sufficiently large T ,  suggesting that instability will 
eventually occur even when K x 1 .  Of course, a more detailed analysis of the problem, 
including the x- and 7-variations in (3.4) could be performed, but, except for the 
numerical work discussed in the next section, lies outside the scope of this paper. The 
sheared disturbance has here been represented by the analytical solution (2.7 a ,  b ) ,  
this being the simplest possible case. However, the analysis may easily be extended 
to deal with sheared disturbances of a more general form, given by Qt) = Z(x- yt ,  y, t ) ,  
which in the long-time limit may be written as [ ( t )  = Zo(z- YT,  y ) .  It may be shown 
that unstable modes exist with their critical lines, y = co, in any region where 
1 +T(8Zo/i3x)(x- YT, y )  undergoes local reversals of sign. I n  particular this follows for 
those forms which have compact support and to which the analysis of Tung (1983) 
is applicable. 

The linear instability analysis cannot, of course, predict the size to which unstable 
disturbances will ultimately grow. However, some insight into this question can be 
provided by results already obtained for the critical-layer instability mentioned 
earlier, which is believed to be very closely analogous. I n  both problems the 
disturbance is centred on a thin region in which there is a local reversal of the 
absolute-vorticity gradient and has an associated Rossby-wave structure (identical 
in each case) away from that region. The results presented for the critical-layer case 
by Haynes (1985) showed that the maximum displacement of fluid particles as the 
unstable disturbance grew was sufficient to  rearrange drastically the local vorticity 
field, but tended to  be limited to the lengthscale of the local reversals in absolute- 
vorticity gradient. It is plausible that the instability described in this paper evolves 
in a similar manner, so that only local (but nonetheless effective) rearrangement of 
the absolute vorticity takes place. The results of the numerical experiments to be 
described in the following section lend support to this hypothesis. 

4. Simple numerical experiments 
I n  order to provide an independent check on the predictions of the analysis in $3, 

it was decided to  seek unstable behaviour in a numerical simulation. This also allowed 
the possibility of investigating flow configurations that do not satisfy the conditions 
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under which the analysis of $3 is valid, namely K -4 1, 64 E 4 1, although i t  is 
emphasized that the purpose of this section is not to present an exhaustive study 
of the behaviour over wide ranges of the various flow parameters. 

The numerical model is based on the barotropic vorticity equation (2.1), again in 
the dimensionless form (2.4) appropriate to disturbances to a shear flow, except that 
here e is not required to be small. This equation is incremented in time using a 
semi-implicit method, the terms representing advection by the basic shear being 
approximated by the trapezoidal scheme and those representing advection by the 
disturbance by the Adams-Bashforth scheme. 

In order to solve the Poisson equation for the stream function it was necessary to 
specify boundary conditions on $ at the edges of the domain. Clearly i t  is appropriate 
to choose the disturbance as being periodic in the x-direction. However the most 
appropriate choice of boundary conditions in the y-direction is less obvious. The 
sheared-disturbance solution is not periodic in the y-direction with any fixed period, 
L say. However we may impose that the initial perturbation to the shear flow (at 
t = 0) including both sheared disturbance and any extra disturbance is periodic, so 

$@, y,O) = $(x, Y+L,O). (4.1) 
Then it may be shown that with such an initial condition solutions of (2.4) satisfy 

This provides an adequate boundary condition for the Poisson equation, except for 
the zonal mean part, $(y,t) say. This may be determined by integrating the zonal 
momentum equation (obtained by taking the zonal mean of (2.4) and integrating with 

(4.3) 
a a$ a2$ a2$ 

respect to y), 

-(-) at ay = “4a,.+@)’ 
where the overbar denotes the average over x, at a fixed value of y. Given the average 
of the vorticity over x, this determines $ up to a constant, which is all that is required. 
The Poisson equation was solved using a Fourier transform method. 

The model was tested in various ways. The treatment of the linear terms in (2.4) 
and the solution of the Poisson equation for the stream function were checked by 
successfully reproducing the sheared-disturbance solution, including the change of 
phase with time. The treatment of the nonlinear terms in (2.4) was checked by making 
the vorticity a passive tracer and comparing its advection by a fixed flow field with 
that predicted by an appropriate analytic solution. The resolution of the model and 
the size of the timesteps taken were chosen so that the differences between the 
numerical and analytic solutions represented, in each case, errors of less than 1 %. 

Once the tests had given confidence that the program code contained no errors and 
that the numerical methods used were adequate, a number of numerical experiments 
were carried out. In each case (2.4) was solved with initial conditions of the form 

( = V2$ = a, cos (K,x+A, y) +a, cos ( K ~  x) e+. (4.4) 
The first term in this expression was intended to represent the sheared disturbance, 
which was allowed to evolve in time and was not ‘frozen’. The constant A, was chosen 
to be negative, and large enough that the absolute-vorticity gradient in the 
y-direction, equal to 1 + &,, would not be one-signed, since such cases were of primary 
interest, given the results obtained in $3. Choosing initial conditions such that the 
gradient was one-signed and then integrating in time for long enough that reversals 
appeared seemed an unnecessarily extravagant use of computing resources. For 
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FIGURE 4. Contours of absolute vorticity in experiment ( i )  at  (a) t = 1 and ( b )  30. The contour 
interval is 0.5. 

similar reasons, rather than waiting for the effects of the instability to  appear through 
the growth of numerical noise arising from rounding error, an extra disturbance was 
added as the second term on the right-hand side of (4.4). The constant a, was chosen 
such that lull < la,l, making this term initially small. The analysis of $3  suggests that 
under suitable conditions this extra disturbance grows in magnitude until it disrupts 
the sheared disturbance. 

The computation was performed on a domain of width 2 x / ~ ,  in the x-direction and 
L in the y-direction. The initial vorticity field was assumed to  be periodic in the 
y-direction. The constant A, was therefore chosen such that A, L was an integral 
multiple of 2x and L was chosen to  be large enough that the second term appearing 
on the right-hand side of (4.4) was very small near the edge of the domain. 

(i) L =  5, a,= 0.2, K, =0.1,  LA, =-32n, a,  = 0.02, K~ = 2 

The parameters here are chosen to be such that the asymptotic analysis of $ 3 should 
be valid, at least qualitatively. However, for this very reason, the requirements on 
the numerical resolution are very demanding since the y-scale of the sheared dis- 
turbances is very fine and the wavelength of disturbances that might be expected to  
grow is considerably smaller than the width of the computational domain. Figure 4 
shows the absolute-vorticity fields at t = 1 and 30. Although the model resolution 
is very high, with 129 points across the domain in the y-direction and 64 waves (i.e. 
127 degrees of freedom) used to represent the variation in the x-direction, some of 
the details of the vorticity field shown a t  t = 30 are clearly artificial. Nevertheless, 
from t = 0 to 30 there has clearly been considerable growth of disturbances with a 
wavelength about 16 or 17 times shorter than the original sheared disturbance. The 
reason that these new disturbances are confined to a central band of the computa- 
tional domain is simply that the initial disturbance was so confined (recall (4.4)). 
Although it  is difficult to make direct comparison between the instability theory of 
$3  and the results of the numerical simulation, the growth rates estimated from the 
latter are broadly consistent with those calculated. And, significantly, no such growth 
was seen when the equations were integrated over the same length of time, but from 

The results of three simulations are now described in detail. 
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an initial configuration in which A, = 0, so the gradient of vorticity was everywhere 
one-signed. Therefore, taken together with arguments presented in $3 and the close 
similarity between aspects of figure 4 (b) and equivalent pictures presented by Haynes 
(1985, figure 3) for the flow in a nonlinear Rossby-wave critical layer, the results of 
the numerical simulation provide very strong evidence for the local barotropic 
instability. 

In  addition, from the absolute-vorticity pattern shown in figure 4(b )  we see that 
the particle displacement associated with the new disturbances has grown to a size 
comparable with the distance between the local reversals in the cross-stream vorticity 
gradient associated with the sheared disturbance. In the notation of the previous 
section the disturbance has grown to O(s). The assumption of small amplitude which 
allowed the derivation of the linear disturbance equation (3.4) can no longer be valid 
and in this sense, at  least, the disturbance has grown to finite amplitude. Whether 
the rearrangement of the vorticity across the width of the tongues can be judged to 

16 @Lm 175 



476 Peter H .  Napes  

Y 

- 5  
- 1  

I o n  
FIGURE 6. Contours of absolute vorticity in X experiment (iii) at (a) t = 11 and (a) 19. The 

contour interval is 0.5. 

be substantial and quasi-permanent is perhaps still open to question. I t  oould, of 
course, be determined by running the model for a longer time, which would require 
even finer numerical resolution than was used in the case described hem. 

In this case the zonal wavenumber of the sheared disturbance is not as small as 
in (i), so there is not such a clear division of scale between that and the disturbances 
which might grow through instability. Nevertheless from t = 0.4, shown in figure 5 (a) 
to t = 36, in figure 5 ( b )  there is again considerable growth in disturbances with a 
wavenumber of about 1.5. The growth rates in experiments (i) and (ii) are similar, 
as is to  be expected from the analysis in $3, given than a, takes the same value in 
each case. 

It is again emphasized that the fact that particle displacements associated with 
the disturbances are comparable with the distance between reversals in the vorticity 
gradient associated with the sheared disturbances suggests that the evolution is well 
past the mgime in which the  mall-amplitude theory presented in $3 is valid. 

(ii) L = 2.5, a,, = 0.2, K, = 0.25, LA, = -32n, a, = 0.02, K1 = 2 
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For this case a ‘linear’ control experiment was performed with identical initial 
conditions but with terms appearing on the right-hand side of (2.4) set to zero. Figure 
5 ( c )  shows the vorticity distribution at t = 36. Comparison with figure 5 ( b )  shows the 
striking qualitative difference in the evolution of the flow caused by the instability, 
and that this would be missed by a purely linear integration. 

(iii) L =  10, a,= 2.0, K O =  0.1, LA, = o ,  a, =0.2, K1 = 2 

Here the sheared disturbance is of rather large amplitude so the small-s assumption 
necessary for the calculation presented in $3  is not valid. However, as may be seen 
from figures 6(a )  at t = 11,  and 6 ( b )  at t = 19, disturbances of similar character to 
those seen in (i) and (ii) grow to large enough amplitude to disrupt the vorticity field 
associated with the sheared disturbance completely. 

5. Discussion 
Using both analytical and numerical methods it has been shown that, when the 

parameter K is small, sheared-disturbance solutions on a beta-plane represent flows 
which, for large enough times, are unstable to further disturbances. The instability 
is first possible after a time that is proportional to the reciprocal of the amplitude 
of the sheared disturbance. The result provides a mechanism by which the sheared 
disturbances might ultimately degrade that does not depend on any overtly 
dissipative process such as viscous diffusion. Furthermore, the instability is not 
allowed by a purely linear description, in which the right-hand side of the governing 
equation (2.4) is neglected. The assertion made by Tung (1983), that linear theory 
remains good if it  is valid initially, must therefore be interpreted with caution, since 
the work presented here provides strong evidence that the linear ‘sheared- 
disturbance’ solutions are unstable. It appears that there is a tacit assumption in 
Tung’s analysis which restricts the disturbances to having a cross-stream wave- 
number in ‘sheared coordinates’ which is O(1). The class of unstable disturbances 
identified in the last section tend to have a cross-stream wavenumber which is O(1) 
in physical coordinates when t is O(s- l )  and therefore O(s- ’ )  in sheared coordinates. 
Furthermore, growing disturbances might well arise through random external 
forcing, which is outside the scope of Tung’s analysis but is inevitably present in any 
flow, be it in the laboratory or in the atmosphere. 

A problem that is closely related to that studied here is the classical one of 
two-dimensional Couette flow in the absence of a background planetary vorticity 
gradient, i.e. with /3 = 0. Clearly the non-dimensionalization used in $ 3  is not suitable 
for this problem, and the leading-order structure of the disturbances is different, 
especially in the outer region. Nevertheless, it turns out that the large-time discussion 
given in $3  is relevant even when /3 = 0. This may be confirmed by explicit 
calculation, but is made plausible by the fact that, even when /3 += 0, the variations 
in the vorticity gradient associated with the sheared disturbances become increas- 
ingly large compared to /3 as time increases. 

So far we have been concerned with two-dimensional flow. However the results of 
the analysis in $3  might be applied directly to the mathematically identical problem 
of the evolution of disturbances to a flow with constant vertical shear, in the absence 
of horizontal boundaries, as described by the quasi-geostrophic equations. The 
regions where the potential-vorticity gradient would be alternately positive and 
negative would then form layers in the vertical and the resulting instability would 
be baroclinic rather than barotropic. Of course, a serious study of the baroclinic 
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problem would have to address the effect of horizontal boundaries. Unfortunately 
there does not seem to be a simple analogue of the sheared-disturbance solution for 
a flow with rigid boundaries, except when p = 0, as considered by Farrell (1982) in 
the baroclinic case. 

The instability studied here may be regarded as a very simple example of the class 
of what one might term ‘tongue instabilities ’. The common feature of the class is that 
the possibility of instability arises through the deformation of absolute-vorticity (or 
more generally potential-vorticity) contours in such a way that regions of opposing 
cross-stream gradient form on each side of an anomalously high- or low-vorticity 
tongue. Other very similar instabilities have recently come to light, the barotropic 
instability of a nonlinear Rossby-wave critical layer (Killworth & McIntyre 1985 ; 
Haynes 1985) being one example, and the baroclinic instability associated with 
tongues of high potential vorticity injected into the interior of an eddy-resolving 
ventilated ocean circulation model (Cox 1985) being another. 

The analysis in $3  appeared in the author’s Ph.D. thesis which was completed a t  
the University of Cambridge. The numerical work and the preparation of the 
manuscript was supported by the Joint Institute for the Study of the Atmosphere 
and Ocean. The author is grateful to  Drs W. Robinson and T. Shepherd and two 
anonymous referees for their valuable comments. This paper is JISAO contribution 
number 26. 
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